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Introduction.

Among the problems of mathematical olympiads there are problems that by
one way or another related to the approximations of irrational numbers by ratio-
nal ones. Such problems directly lead to theorems of the theory of Diophantine
approximations, such as the Kronecker Theorem and Dirichlet Theorem, and to
the concept of subset that dense in a given set (a concept important for under-
standing the fundamental properties of real numbers). Thus, such problems, in
addition to their competitive Olympiad assignments, become a cognitive stim-
ulus.

These notes can be considered as a short introduction to the topic mentioned
above with applications to olympiad problems.

I. Preliminary facts related to integer and fractional parts.
1. Let z is real number then {n{ma}} = {nma} for any n,m € Z.
Indeed, {n{mz}} = {n(mz — |mz])} = {nmz} .
2. Note that for irrational 7 and any integer n number {nr} is irrational as

well, because
{nt} + [n7]

otherwise 7 = €Q.

3. Archimedes’s jgxiom:

For any real o > 0 there is natural n such that na > 1.

II. A little bit theory.

For further we need some facts that represented by the following lemmas:

Lemma 1.

Each interval (a, 8) with the length 8 —« > 1 contain at least one integer
number.

Proof.

Denote n := |a] + 1. Then from |a] < @ < n and a+1 < 3 follows
a<n=la]+1<a+1<p.

Lemma 2.
Let 7 € (0,1) and 7 ¢ Q,then there are unique natural k and irrational p such
that
l=kr+pand 0<p<T.
Proof.

1 1 1 1 1
Really, denote k := {J S PpI=T {} then from — = {J + {} we
T T T T T

immediately obtain 1 = k7 4+ p and 0 < p < 7, where p # 0 (because T is
irrational)

and integer k£ > 0 (because 0 < 7 < 1).

Suppose that there is else 1 = k17 + p; and 0 < p; < 7, then

k—ki|lT=lp—pil<7T = |k-k|<l=k=k = p=p;.

Lemma 3.
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Let 6 € (0,1) be irrational number and k any natural number, then exist

integer m # 0 such that
1
{mb} < z and |m| < k.

Proof.

Let consider sequence z; := {i#} where ¢ = 1,2,....,k + 1. Since all these
numbers are different (because otherwise if z; = x; for some i # j then

{10} = {j0} = i0 — 6] = j0 — |j0] < 6(i— j)=[i0] - 0] —

,_ Lio] =1j6)

: € Q and that contradict to irrationality of #) then there are
=7

x; and x; such that 0 < z; —z; < T
1
Indeed, assume the contrary |z; — ;| > — for all i # j.

Let y1 <y2 < ... < yi41 are all terms of sequence z1, x9, ..., Trp4+1 in increas-
ing order.

Since by assumption y;4+1 — y; > E’i =

Wre1— u)+ (e — ye—1) + oo+ (2 — v1) 2 k-
But that contradict to 0 < y1 < yr+1 < 1.

Since z; — x; = {0} — {j0} = (i0 — [i6]) — ( jO — [jO]) =
0(i— j)— i8]+ [j0) and 0 < &; —z; < z we obtain
zi—xj ={0(i— j)— 0]+ [j0]} ={0(i— j)}.

So, {m#} < z for m =¢— j and |m| < k because
—k=1-(k+1)<i— j<(k+1)—1=k.

1,...,k then we obtain yri1— y1 =

> 1.

| =

Remark 1. Actually don’t necessary to claim that 6 € (0, 1), because for
any irrational § by Lemma3 for irrational {8} € (0,1) there is integer m # 0

such that {m{0}} < % and {m{0}} = {m0}.

Corollaryl.
Let 0 be irrational and k be any natural number, then there is the natural
1
m such that {mf} < -

Proof.

Suppose that m which was obtained in the Lemma 3 is negative, then by
Lemma 2 1=1[-{mf} + 01, wherel € Nand 0 < 6; < {mf}.

Hence 6; = {61} = {1—1-{mb}} = {-l-mO+1|mb|} = {-l-mb} =

{m10} ,where my; := —Ilm > 0 and since 6; < {mb} < 7 we have now

1
positive my and {m;0} < T

(But this my can be greater then k and as the price for positivity of mq we
lost |m| < k).
Remark 2.
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For any 0 € R\Q and any ¢ > 0 there is natural m such that {mf} < e.
Indeed, since for any € > 0 by Archimedes’s Axiom there is £k € N that
1 1
ke >1 «— E<5then{m9}<E<5.
Corollary 2.(Dirihlet’s Theorem)
Let 6 irrational and k arbitrary natural number, then exist integer m and [
1
such that |mf — ] < z and 0 <m < k.
Proof. 1 1
By Lemma 3 we have 0 < mf — |mf] < T = |mé — |mb|| < T =

[|m] 6 — [mB] - sign (m)| < %

1
Let [ := |m#] - sign(m) , m :=|m|. Then we obtain |mf — 1| < z where
0<m<k.
Corollary3.

l
For any irrational # and any natural k there is rational r = — such that
m

|0 —r| < 1 and 0 <m < k..
mk
Corollary4.
Let 6 irrational number and € > 0 — arbitrary real number, then inequalities
below have infinitely
many solutions:
a) {z-0}<e, z€Z
b) {z-0}<e, z€N
c) |lt-0—y|<e zeN, yelZ
Proof. 1 1
a) Inequality {z -0} < z where k € N and — < ¢ has at least one solution

in Z, which is also solution of inequality {z -0} < e.
Suppose that fore some ¢ > 0 inequality has finite set S of solutions , then
0<d:= mig {z - 0} and there is no solutions for inequality {z - 0} <  in Z. But
EAS

1
that is contradiction, because for natural &k , such that T < 6, by Corollary 1

1
inequality {z -0} < % has solution in Z.
By the same way can be proved (b) and (c).

Definition.

We say that proper subset A of numerical set X dense in X if for any real
e>0

and any z € X there is a € A such that |z —a| < e.(Approximation
Form)

If X =(p,q) and A & (p,q) then easy to see that A is dense in (p,q) if for
any subinterval («, ) C (p,q) there is a € A such that a < a < 5.(Interval
form);

If AC R and A is dense in R we say that A is everywhere dense.
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Immediately from definition follows:

If A G R everywhere dense (dense in R ) and 7 € R\ {0} then 7 + A and
TA dense in R.

Proof.

Let (o, 5) € R.Then for interval (o — 7,8 — 7) thereisa € (a — 7,5 —7) <=
a+7 € (a,B)

and in the case 7 > 0 for interval <a7 é ) there is a € (a’ ﬁ) =
T T T T
Ta € (o, ).
If 7 < 0 then for interval (5, e > there is a € <6, a) = T1a € (o, f).
T T T'T
Examples.

1. Set of rational numbers Q is everywhere dense, that is for any two real o <
B there is r € Q
such that a < r < 5.(Q everywhere dense in R)
Indeed, by Archimedes’s Axiom there is natural n such that
n(f—a)>1 < nf—na>1
and by Lemma 1 thereism € N such that na < m < nff < a < % < g.

2. Let A:={{\/n}|n € N}.Then A dense in (0,1).

Indeed, let (o, 8) C (0,1).We will prove that there is m,n € N such that

a<yn-m<f <= a+m<yn<f+m = (a+m)’<n<
(B+m)*.

Accordingly to Lemma 1 we claim (84 m)®> — (a +m)® > 1 <

B-a)22m+a+p)>1 < 2m+a+ 5> — =
1= (- a?)
m>m.
1-(F-a?)

Thus, for any natural m > there is n € N such that

2(6—a)

(a+m)’<n<(@B+m) < a+m<yn<B+m =
m<yn<l+m < m=][/n].

Then a+m</n<fB+m <= a</n—[yn<p = a<{y/n}<p.

Theorem (Leopold Kronecker)

a) For any irrational 0 set {{nf} | n € N} densein (0,1).

b) For any irrational 8 set {nf + m | n € N,m € Z} everywhere dense (dense
in R). (that is for any @ € R and any € > 0 there are n € N;m € Z that
la — (nf +m)| < e).

Proof(Traditional)

a) Firstly, in supposition § € (0,1), we will prove that for any «,f €
[0,1] and « < B there is natural n such that a < {nf} < 5.

By Corollaryl to Lemma3 (Remark 2) there is m € N | such that
{mb} < B — «.
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Denote § := {m#} and consider the sequence 0, §, 29, ..., nd, ....Since § —a >

B

@
0 then — — — > 1 and, therefore, by lemmal there is natural n such that

0 ¢

% <n< ? <= a <nd < B.Since nd € (0,1) then nd = {nd} = {n{mb}} =
{nm@} and for n := nm we get a < {nf} < .

Let now 6 be any irrational number. Then 6, := {6} = 6 — [] is irrational
as well and, therefore,

there is natural n such hat o < {nb1} < 8 <= a<{nfd—nlf]} < <
a < {nf} < pB.

b) First we will prove that for any interval («, 8) there aren € N;m € Z that
a<nld+m<p.

WLOG we can assume that 8 — « < 1.Then ({a},8 — [a]) € [0,1] and by
a) thereisn € N

such that {a} < {nf} < B—-[a] <= a<{nf}+a] <f <= a<
nf — [nb] + [o] < f =

a < nl +m < f,where m := [a] — [nf] € Z.

Let a be any real number. Then for any 0 < ¢ there is n € N, m € Z that

a—e<nl+m<a+e < |la—(n+m)| <e.

Now we will consider another, new constructive proof of Kro-
necker’s Theorem.

The two following lemmas represent part a) of the theorem and also gives
algorithm of finding n for any interval («, 8) or for any € > 0 dependently from
form of definition of density (Interval Form or Approximation Form).

Lemma 4.

For any irrational 7 € (0,1) there is natural & > 2 such that {k7} < g

Proof
For given 7 we have representation 1 = ko7 + 71, where kg € Nand 0 <

m<TH0<7m < g, then again (because 77 irrational and 71 € (0,1)) we

1
have 1 = k171 + 79 where k1 > 2 because 71 < 3 and 0< 79 <11 < %

Therefore 7o = {72} = {1 —ki71} = {-k1 (1 —ko7)} = {k7} < %,Where
k := koky > 2. If g < 711,then from 7 — 71 = {r— 71} = {7 — 1+ kot} =

{(ko+1)7} follows {k7} < %,Where k=ko+1>2.

Lemma 5.
Let 0 € (0,1) be irrational, then there is the sequence of natural numbers
0
ny < ng < ..<ng < ..such that {ngf} < ok
Proof. 9
By Lemma 4. exist natural k& > 2 such that {k6} < i.Let ny = k.
Suppose that we already have ni; < ng < ... < n; such that
0
9j = {nﬂ} < ? 7=12,...1.

j7
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0;
Applying Lemma 4 to irrational 6; we obtain 0;41 := {k;0;} < 0} for some
0 0
natural k; > 2.But 6; < 5 and {k;0;} = {k; {n:0}} = {ni10} < sy where
N1 = kin; > n;.

Corollary 1
For any irrational 6 € (0,1) and for any positive € exist infinitely many nat-
ural n such that {nf} < e.More precisely, exist increasing sequence of natural

0
numbers n; < ng < ... < ng < ... such that € > {nxf} and {ng10} < {ng },
keN.

Proof 0
For {nd} there is m > 2 such that {mnf} = {m {nb}} < 7{77,2 ! < €. Then

(b}

for n := nj we obtain ngi1 := mny > ny for which {ng,0} < 5

Corollary 2.
Let 6 € (0,1) and irrational, then set {{n@} i ne N} everywhere dense in

the (0,1) .Moreover, for each interval («, 8) € (0,1) inequality a < {zf} <
has infinitely many natural solutions.
Proof

By Corollary 1 to Lemma 3 (Remark2) there is natural m such that

{m#} < f — a.Then interval <{7§0}’ {n:z}
by Lemma 1 contain at least one natural n, namely:

{Tm9}<n<{77§9} = a<n{mb} <pf = a < {nmb} < B, because

from n{mdé} € (0,1) follows n{mb} = {n{mb}} = {nmb}.(For example we

> has length greater then 1 and

can take n := + 1). So, we have one natural solution = := nm of

a
{mo}

inequality o < {z6} < 3.
{mo}

But by Corollary 2. always exist natural m’ > m such that {m/6} < 5

Then n' :=

7 + 1 > n.( precisely n’ > 2n — 1, because
m

oy |l e

and we get another solution natural solution =’ = m/n’ > z of inequality
a < {z8} < 5 and this process can be continued infinitely.

By this way starting from m and n = + 1 we obtain infinite in-

mo
creasing sequence of natural solutions of inequality a < {z0} < 3.
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For applications often convenient the following interval form of Kronecker’s
Theorem

c) Corollary 3

If 6 € (0,1) is irrational, then for any interval (o, 3) C R there are n,m €

N such that a« < nf —m < g (that is < nf —m ‘n,m € N} everywhere dense
(dense in R).

Proof
Let (o, ) € R . Without loss generality we can suppose that |a] =
| 3] . Since ({a},{B}) C (0,1) then inequality {a} < {nf} < {B} have natural

la] +1
0

solution so big as we need. In particular it has solution n > .Since

ol

> — nb>|a]+1 = ] > |a]+1 < [nd] — |a] > 1 then
denoting m := [nf] — |«| we obtain
a<{nf} <{f} <= a—|al<nd—|nb] <B—|a <=
a<nd—(nf] — o)) <f <= a<nf—m<L.

III. Applications to problems.

Problem 1

Prove that for any natural M with k& digits there is natural n such that first
k digits of 2™ is precisely M.

Solution
Assertion of problem can be written as: exist m € NU {0} such that
2n n
M = 10mJ — M < Tom <M+1 < logM < nlog2-m <
log (M +1).

So we have to prove that this inequality has natural solution n and m.

But that immediately follows from Corollary 7 for 6 := log 2.

Possible directly solution which based on Corollary 4(b) to the Lemma
3.

Because M is k digits number then |log M| = k.Denote « := {log M} =
log M —k and 8 := min{1,log (M + 1) — k}, then (o, 8) C (0,1) .By Corollary
4(b) to Lemma 3 inequality {zlog2} < f — « has infinitely many natural
solutions.Let take one of them greater than

ie. let n > and {nlog2} < f — «

ko k
log2’ log 2
o B
{nlog2}’ {nlog2}

quently contain natural [ .So we get inequality
a <l{nlog2} < f < logM <lInlog2— (I|nlog2] —k) < B+k <
log (M +1).
Denote m :=1|nlog2] — k and n := In then we obtain inequality

then interval ( > has length greater than 1 and conse-
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log M < nlog2 —m < log (M + 1) where n € N and m € NU {0}.

Problem 2.

Prove that exist irrational 6 such that set {26 | n € N} is everywhere dense
in [0,1).

Solution.

Let all natural numbers are represented in the binary system. So we have
N ={1,10,11, 100,101, 110,111, 1000, ...}

and let @ is real number in which after dot consecutively was written all
natural numbers in binary notation. By the other words

f# = .1101110010111011110001001.... This number is irrational because its
binary representation contains zero segments of any length.

This number has interesting property:

For each number b = 0.8,f,...8;, we can find natural number which indicate
the position in € from where digits of number b starting as segment digits of

0.Therefore, we can define function ! (b) which shows the least number of starting
positions of number b.For example if 8 = 0.0105....60,,..., then
{26} = 0.8,B5...8,010)+h41---
Let a = 0.a13...c;... € (0,1) and let p arbitrary natural , then for b :=
277 |2Pa] = 0.a10...c;, numbers o and {29} have the same first p digits —
o, @3, ...ap. Therefore ’a — {2l(b)9}| =277 |0.o¢p+1... — O-el(b)+p+1-“’ <27P,

Problem 3.
Set S := {sinn | n € N} is dense in [—1,1].
Solution. n n n
Note that — = [—} + {—} implies
2 27 27

sinm = sin (277 {%} + 27 {%}) =sin (27r {%}) .
Since {n 21} is dense in [0,1) then 27 {ﬁ} is dense in [0, 27).
™ 27

To complete the proof it suffices to apply for sin x the following

Proposition.

Let f is continuous on [a,b] and f ([a,b]) = [m,M] and A & [a,b] dense
in [a, ]

then f(A) dense in [m, M].

Proof.

Let ¢ € [m,M] and f(p) = q for some p € [a,b]. For any ¢ > 0 there is
0 > 0such that [z —p|<d = |f(x) —¢|l<e.

Since A dense in [a,b] then there is @ € A such that |a —p| < §.Then
|f (a) — q| < € and that mean f (A) dense in [m, M].

Problem 4. Let A := {{logn} | n € N}.Then A dense in (0,1).

Hint. B := {{logn} | n=2",m e N} = {{mlog2} |meN} C A and B
dense in (0,1).
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Problem 5.

Between two rational numbers always lie at least one irrational.
Hint. Consider the interval (Tl/\@, 1"2/\@) .

And more problems to solve.

Problem 6.

a) Let A:={y/n—+/m|n,m € N}.Then A everywhere dense.
b) Let A :={¢/n—+/m |n,m € N} .Then A everywhere dense.
Problem 7.

Prove that set {r3 |reQ } is everywhere dense.

Problem 8.

Prove that set {In (r*+1) | r € Q } is dense in [0, 00).

Problem 9.

Prove that for any natural ¢ > 2 there is such real number « that any interval
(a,b)  (0,1)

contain at least one term of the sequence a,, = {ag™},n € N.
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